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ABSTRACT 
Heat and fluid flow through a trapezoidal cooling chamber were studied numerically. Hot fluid is assumed 
inflow at some depth below the surface into one end of the chamber and withdrawn at another depth from 
the other end. The top of the chamber is exposed to the surrounding for cooling and the remaining 
side-walls are all insulated. Inflow Reynolds number Ro considered is in the range of 100 to 1000 and the 
inlet densimetric Froude number Fo considered is in the range of 0.5 to 50.0. Numerical experiments show 
that the flow and temperature fields in the flow-through trapezoidal chamber are strong function of both 
Fo and Ro. The submergence ratio D/do, chamber length to depth ratio L/D and chamber wall angles are 
also significant in influencing the flow fields. Comparisons were also made with available experimental 
and prototype data. 
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N O M E N C L A T U R E 
A Aspect rat io, A = (L/D) 
de Diameter of the exit opening of the chamber 
do Diameter of inlet opening of the chamber 
D Depth of chamber 
Do Depth of submergence of inlet opening 
De Depth of submergence of exit opening 
Fo Densimetric F roude number , Fo = Vo/{gdo(ρ—ρo)/ρo}0.5 

g Gravitational constant 
L Length of chamber 
Lc Characteristic length, Lc=(L × D)½ 
M, N Mesh sizes 
Pr Prandtl number, P r=v /α 
P Pressure 
Ra Rayleigh number , Ra= βgL3 T/vα 
Ro Reynolds number Ro= Vodo/v 
∆t Time increment 
T Temperature 
Ta Temperature of ambient air 
To Tempera tu re of inlet ho t fluid 
Te Equi l ibr ium liquid surface t empera tu re 
u Velocity in the x-direct ion 
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v Velocity in the y-direction 
x, y, z Rectangular coordinates 

2 Laplace operator 
α Thermal diffusivity 
β Coefficient of volumetric expansion 
ζ Dimensionless transformed x-coordinate 
η Dimensionless transformed y-coordinate 
θ Dimensionless temperature 
Φ1,Φ2 Angles of slope of chamber side walls 
v Kinematic viscosity 
ρo Reference density 
Ψ Stream function 
ζ Vorticity 

INTRODUCTION 
The rejection of heat from a body of fluid have been the subject of many research due to their 
important practical applications in the problems of thermal discharge from power stations1 – 2 7 

and the cooling of a confined environment by forced or natural fluid convections28–45 etc. The 
patterns of fluid flow within a body of fluid in a confined environment very often determine the 
efficiency and the mode of heat rejection and/or the quality of the returned fluid to the 
environment. As a consequence, it is often desirable to be able to understand the fluid motion 
in a cooling chamber, and to predict, as accurately as possible, whether the heat load from a 
heat source could be dissipated efficiently out of a given body of cooling fluid under certain 
flow conditions and limitations. 

An example of the numerical experiments on thermal discharge problem was obtained by 
Barry and Hoffman1. An explicit numerical scheme was used to compute the temperature and 
velocity profiles in a receiving water body. Buoyancy and the equation of motion in the vertical 
direction were neglected. The solution is valid for very shallow bodies of water. In another 
numerical experiment, Boericke and Hall2 analysed the behaviour of the hydraulic and thermal 
dispersion of heated water discharged into an irregular estuary. The model is based on the 
shallow water approximation to the momentum equations in two dimensions. The vertical 
variations in velocity and temperature were neglected. There are various other numerical and 
experimental studies of thermal discharge problems3–22 , but very few considered the variations 
of temperature and velocity fields in the vertical plane. This vertical variation of temperature 
and velocity profiles are important in the study of the cooling chamber problem with low aspect 
ratio of the chamber (L/D≤ 10). One such relevant study was performed by Stefan21–23 in the 
modelling of spread of heated water over lake. A vertical trapezoidal section of the lake was 
modelled. The fluid dynamic and temperature fields in the lake were numerically simulated by 
means of a finite difference procedure. The flow in the reservoir is assumed to be two dimensional 
in a vertical plane. Inflow is allowed at the surface on one end of the reservoir and outflow 
occurs at the opposite end. The reservoir inflow is set at a given temperature and velocity so 
as to simulate the thermal discharge from a power generating facility. Other related studies 
include the natural and forced convection studies in enclosures28–45, such as the forced convective 
cooling of the printed circuit borad in a confined space by Davalath and Bayazitoglu32; the 
numerical experiments of inflow into air-conditioned rooms in a vertical plane by Nielsen38. A 
study of the laminar velocity and temperature fields in a rectangular flow-through reservoir was 
done by Oberkampf and Crow3 9 . Related studies of convective heat and fluid flow in enclosures 
of various shapes were studied by various investigators recently34–37. In the study of inflow into 
an air-conditioned room, for example, instead of hot fluid being discharged into an enclosed 
environment, cooled air is introduced into a room. 
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THE MODEL AND THE GOVERNING EQUATIONS 

The model analysed (Figure 1) consists of a two-dimensional trapezoidal region, described by 
its length (L), depth (D) and wall angles (Φ1,Φ2) at each side of the chamber. The inlet of warm 
fluid and outlet for cooling fluid are specified at some depths Do and De respectively below the 
free surface. Similarly, do and de specify the diameters of the inlet and outlet of the cooling 
chamber. Heat is convected into the reservoir at the inlet, and is lost through the surface and 
by convection at the outlet. All the other walls are assumed adiabatic. In the analysis of the 
flow-through cooling chamber, the following assumptions were also made: (a) flow in the chamber 
has reached a steady state; (b) temperature variations in the chamber are sufficiently small that 
Boussinesq approximation is valid; (c) internal energy generation is absent; (d) the heat capacity 
of the fluid is sufficiently large that the temperature of the fluid is negligibly affected by friction; 
(e) free surface elevation remains constant. 

Define the dimensionless variables: x* = x/X, y* = y/Y, θ = (T—Tref)/(T—Tref), Vo, 
(Vodo), (Vo/do). X, Y are scaling factors for the x- and y-coordinates respectively 

and Tref is a reference temperature. The dimensionless governing equations describing the laminar 
fluid motion in the chamber are: 

(1) 

(2) 
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with the vorticity defined as: 

and the velocities given by: 

For two-dimensional problem: 

[From here on, the * representing dimensionless variables and quantities are omitted for 
simplicity.] 

The inlet Reynolds number Ro = Vodo/v; densimetric Froude number Fo = Vo/[gdo(ρref—ρo)/ρo]1/2; 
Prandtl number Pr = v/α and aspect ratios A1 = (do/X) and A2 = (do/Y). The symbols ρ, g, v and 
α denotes respectively the density, gravitational acceleration, kinematic viscosity and thermal 
diffusivity; T is the temperature of the fluid. Subscript 'o' indicates some reference state, say 
that of the inlet warm fluid. The coefficient β in the density-temperature relationship is taken 
as constant. 

BOUNDARY CONDITIONS 
Thermal boundary conditions 

Rigid boundaries are assumed adiabatic, therefore ∂θ/∂n = 0, where n is the direction normal 
to the boundary. The temperature at the inlet is assumed to be uniform. At the outlet, heat is 
assumed transferred across this boundary by convection alone (i.e. ∂θ/∂y = 0). At the 
ambient-liquid interface (Figure 1b), heat is transferred to the atmosphere by radiation (Qrad), 
evaporation (Qevap) and by conduction (Qcond) and convection (Qconv). The thermal condition at 
the chamber liquid surface, due to the heat load introduced from the inlet to the chamber, is 
therefore given by ∂θ/∂x = Kθs at x = 0. The value of K is primarily a function of the ambient 
air speed and the equilibrium (natural surface) temperature of the liquid body as defined by 
Edinger4–6 and Jobson15. 

Velocity boundary conditions 
Velocities for the rigid non-slip walls are u = v=0. At the liquid reservoir surface, u = 0 and 

the effect of air movement over the surface is modelled by a non-deformable surface shape, with 
Ψ at the surface = constant. The applied dimensionless wind stress due to air movement at the 
liquid surface Τs= — ∂v/∂x is assumed constant23–25. In the absence of air movement, Τ S = 0 . 
Velocities at the inlet and outlet region of the chamber reservoir are specified. 

Stream function and vorticity boundary conditions 
For solid non-slip wall Ψ = constant and ζ = — A2n(∂2Ψ/∂n2), where An is a non-dimensionalized 

directional constant. At the free surface, u = 0, Ψ is a constant and ζ = A1(∂v/∂x) = constant. 
Other boundary conditions for Ψ and ζ must be derived from those for velocity in such a way 
that the solution obtained by using Ψ and ζ are identical to that obtained by using u, v and p. 

NUMERICAL SOLUTION PROCEDURES 
Following Mallinson and de Vahl Davis46 and Behnia et al.47, in order to speed up the 
convergence rate to steady state solution of (l)–(2), the approach adopted here is to introduce 
false transient factors (αΦ) into the time derivative terms in (l)–(2), which allow relative changes 
to be made in the time rates of change of Φ(Φ = ζ or θ), i.e. to replace the time derivative terms 
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in (l)-(2) with (1 /αΦ)(∂/∂t). Further change is also made to replace (3) by the parabolic equation: 

(6) 

Numerical experiments show that, by using the above approach and with the proper choice of 
the αΦ values, steady state solution of (l)-(2) can be reached with considerably less computational 
effort than with the set of steady state elliptic equations. 

Furthermore, in order to provide a simplified and accurate finite-difference treatment of the 
boundary conditions on non-rectangular boundaries, the physical region as show in Figure 2a 
is transformed into a rectangular domain (Figure 2b) by introducing new coordinates ζ and η, 
in which: 

ζ = ax for 0 ≤ x ≤ D 

for 0 ≤ y ≤ L 

where a, b are scaling factor, chosen such that 0 ≤ ζ ≤ 1 for 0 ≤ x ≤ D and 0 ≤ η ≤ 1 for 0 ≤ y ≤ 1. 
Functions F1(x) and F2(x) describe the left-hand and right-hand boundary of the reservoir 
respectively. This transformation is generally satisfactory provided F2(x) — F1(x) ≠ 0. 

In the transformed ζ–η region, the equations in terms of ζ and η are: 

with 
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and the transport equations may be generalized as: 

where Φ stands for θ or ζ. The constant c is (1/Ro) for the vorticity transport equation and 
(1/RoPr) for the energy transport equation. 'B's, 'D's and 'E's are spatial 'constants' resulting 
from the transformation. They are functions only of the positions in the ζ–η plane. These 
coefficients are required only to be computed once in each solution. SΦ are the source terms of 
the transport equations with Sθ = 0.0 for the energy transport equation and Sζ= f(Fo, θ, ζ, η) for 
the transport equation. 

The finite-difference solution of (8)–(10) were obtained with the rectangular mesh system 
defined in Figure 2b. The numerical procedure used involves an alternating direction implicit 
(ADI) method originally proposed by Peaceman and Rachford48 and modified by Samarskii 
and Andree49. For the governing transport equations, the advancement over one time step is 
accomplished through: 

[I — σ ∆tAζ](Φ)* = [Aζ + Aη](Φ)n + (SΦ)n 
[I — σ ∆tAζ](Φ)** = (Φ)* 

(Φ)n + 1 = (Φ)n + ∆t(Φ)** (11) 
where (Φ)* and (Φ)** are dummy variables; Aζand Aη are matrix operators formed through 
finite differencing of the governing equations in the ζ and η directions respectively; (SΦ)n is the 
source term evaluated at the most recent solution field; σ is a weighted time-step factor; I is an 
identity matrix. This scheme is equivalent to: 

For σ = 1/2, the above scheme corresponds to the Crank-Nicholson equation. 
In the above finite-difference formulations, all spatial derivatives are approximated by 

second-order-accurate centre differences. The convective terms in (10) are approximated by using 
a second order up-wind differencing method. The mixed spatial derivatives resulting from the 
mesh transformation are handled by the method proposed by McKee and Mitchell50. The 
resulting linear set of finite difference equations is then solved by an algorithm due to Thomas 
(see Roach51). Three-point backward and forward difference formulae are used for derivatives 
at the boundaries. Estimates of boundary values of vorticity and temperature are obtained after 
each iteration in the ADI procedure and are used as more up-to-date approximations in the 
second half of the ADI procedure. The source term of each equation is calculated using the 
latest field value available. 

The boundary finite difference vorticity values are obtained by considering the Taylor series 
expansion of Ψ into the solution region and taking into consideration the Ψ and the velocity at 
the boundary, i.e. along the parallel walls: 

and along the inclined walls: 
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where Cn and C'n are spatial constants resulting from transformation. Subscripts W + 1 and W 
refer to the wall and the adjacent internal mesh point value respectively. 

It was initially hoped that the bulk of the results could be obtained using a 51 × 101 mesh, 
and that this mesh would be fine enough to show, with reasonable accuracy, the general features 
of the flow. At low Reynolds number and high densimetric Froude number, the solutions obtained 
were qualitatively acceptable. However, at high Reynolds number (Ro > 500) and low densimetric 
Froude number (Fo < 1), truncation errors were large and unrealistic temperature fields resulted. 
A finer mesh of 101 × 201 was then used, and a marked improvement occurred in all the solutions. 
Further refinement in the mesh size produced little changes in the result. This degree of consistency 
was deemed acceptable here to use the 101 × 201 mesh in view of the very large increase in 
computer cost required to obtain the minor benefits of any further increases in accuracy. Hence, 
unless otherwise specified, a 101 × 201 mesh was used in all the solutions described here. 

For the numerical time step (∆t) selection, it was found that a suitable ∆t can be chosen 
empirically by examining the source term of the governing equation. If the source term of a 
governing equation is relatively small compared with the convection term and/or diffusion term 
(e.g. the ζ–Ψ equation), or if the source term is zero (e.g. the θ-equation), then the ∆t can be 
chosen according to the Courant-Friedrich-Lewy condition51, i.e. the upper limit on the ∆t 
was determined by: 

whichever was the smaller. If the source term of the governing equation is very large, then the 
∆t for these equations is governed by a parameter λ, given by: 

where 1 ≤ λ ≤ 2. The source term of the ζ transport equation lies between those described for 
conditions (15) and (16). If the Fo » 1, then the source term of the ζ-equation is relatively small. 
The motion is governed predominantly by the initial momentum of the jet. Condition (15) may 
then be used for the selection of time step. However, if Fo ≤ 1, then buoyancy may dominate 
the motion. The source term in the ζ-equation is relatively large and condition (16) is used for 
the time step selection. 

RESULTS AND DISCUSSION 
In a study of this nature, it is inevitable that a large amount of results on computer output has 
been accumulated. It is obviously impossible to present all of these results here. In the discussions 
that follow, relatively few actual numerical results are presented and emphasis is placed upon 
what is, in a sense, the broader view of the problem, namely the analysis of the trends or expected 
behaviour rather than particular results. 

When fluid is drawn from a chamber, heated by some processes and discharged back to the 
chamber to dissipate its heat load to the ambient, an orderly fluid motion can be observed 
within the cooling chamber. This fluid motion and subsequent heat transfer from the surface of 
the cooling chamber is governed by the condition of discharge, the shape and size of the chamber. 
Since fluid under normal condition has a positive coefficient of thermal expansion, the warm 
fluid tends to rise to the surface and spread. This occurs because regardless of the reduction of 
buoyancy by mixing, the warm inflow is always buoyant with respect to the ambient fluid. Thus, 
if the heated fluid is discharged below the surface of the cooling chamber, it will tend to rise 
and remain afloat over the ambient fluid as a stratified layer. For the opened cooling chamber, 
the exposure of the upper surface of the incoming heated fluid to the atmosphere results in a 
larger temperature excess near the surface and thus allows greater temperature reduction by 
surface heat loss. If the heated surface fluid is discharged into the cooling chamber in such a 
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way that minimum mixing occurs between the heated effluent and the receiving body of fluid, 
then heat dissipation to the atmosphere is at the highest rate since the surface-layer temperature 
is at a maximum. 

The two main dimensionless parameters used in studying the cooling chamber problem (in 
which the inertia forces, buoyancy forces and viscous forces control the phenomenon) are the 
densimetric Froude number Fo and the Reynolds number Ro. The following numerical 
experiments illustrate the role of Fo and Ro in establishing the flow pattern. 

Variation of Fo has a significant effect on the trajectories of the buoyant inflow. Figures 3 and 
4 show the effects of variation of Fo (with Ro = 500) on the streamline and isotherm contours 
for the cooling chamber numerical experiments. These Figures show that the incoming heated 
fluid spread from a buoyant plume-like discharge for Fo = 0.5 and 1.0 to a less buoyant jet-like 
discharge for Fo = 2.5 and Fo = 50. The depth of the submerged inlet is at Do/do = 1.5 below the 
fluid surface. In these Figures and others that follow, unless noted otherwise, the contour lines 
1,2,...,9 represent the contour level of 10%, 20%,...,90% of (Φmax— Φmin), where Φ = Ψ for 
the streamline contours and Φ = θ for the isotherm contours. It should be noted that all the 
results are plotted at a 'reduced scaling', Hence, for reservoirs with wall-slopes of 45° and 
L/D = 10 say, the horizontal length is substantially compressed and the apparent wall-slopes are 
not 45°. 
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For Fo = 0.5 and Ro = 500, (Figure 3a and Figure 4a), the numerical experiment shows a very 
buoyant inflow to the chamber. There is an almost immediate rise of the trajectory of the warm 
fluid as it enters the reservoir. The warm fluid then spreads towards the surface and remains 
afloat near the surface region until it reaches the downstream boundary. Here, the fluid is being 
forced down the end wall and the ambient temperature is also relatively large. Some secondary 
and tertiary motions as described by de Vahl Davis and Mallinson33 in a natural convection 
problem, were observed to form near the outlet region. These motions consist of two strong 
secondary eddies, and a very weak tertiary eddy in between the two larger secondary eddies. 
The effects of these secondary and tertiary eddies are shown in the distortion of the 20% isotherm 
in Figure 4a. Further study of the isotherms in Figure 4a indicates the predominant effects of 
buoyancy. Warmer fluid and larger temperature gradients exist in the upper half of the chamber, 
with most of the lower half being isothermal. 

As Fo is increased to 1.0 at Ro = 500, the secondary eddies near the outlet region combine to 
form a single eddy. The eddy centre is located near the outlet region. Distortion of the isotherms 
can now be seen in Figure 4b for the 10% contour line. Here, the buoyant force of the incoming 
heated fluid is of the same order of magnitude as its inertia force. The warm fluid thus rises 
immediately as it enters the basin, but not as sharply as when Fo = 0.5 When the warm fluid 
reaches the surface, it still possesses sufficient buoyancy and horizontal momentum to cause it 
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to spread out as a narrow warm layer across the chamber. As a result, larger horizontal velocity 
always occurs at the free surface. As the surface current reaches the downstream wall, it is being 
forced down to the outlet. This results in large downward velocity near the downstream wall. 
Furthermore, the viscous driving force origination from this downward movement of the fluid 
near the end wall causes a circulation eddy to form near the outlet region. The streamline contour 
further shows that cold entrainment fluid is being brought from the deeper region to the warm 
inlet region. This causes appreciable velocities near the bottom of the chamber in the opposite 
direction to the velocities near the surface. Experimental results obtained by Pleasance44 show 
similar circulation patterns for a similar problem. 

As Fo is further increased, the circulation and surface flow pattern change dramatically. The 
eddy centres in Figure 3a (Fo = 0.5, Ro = 500) and Figure 3b (Fo = 1.0, Ro = 500) have shifted to 
the middle of the reservoir as Fo is increased to 2.5 (Figure 3c). If Fo is further increased to 25, 
the eddy centre moves nearer to the inlet region (Figure 3d). 

Further studies of the isotherm and streamline contours of the cooling chamber through 
numerical experiments show the gradual spreading of the incoming flow towards the bottom of 
the reservoir as Fo is increased. This is particularly evident in the solution with Fo = 25 which 
represents a solution for relatively cool non-buoyant inflow (Figure 3d and Figure 4d). The 
inertia force of the incoming heated fluid here is very much greater than the buoyant force. 
Hence, incoming fluid did not have sufficient buoyancy to rise and spread towards the surface 
immediately as it enters the chamber. Instead, the fluid rises very gradually as it enters the 
chamber, but diffuses quickly over the entire chamber's depth at a small distance away from 
the inlet. As a result, the surface current is not as high as those described for Fo = 1.0. Moreover, 
the outlet fluid in this case is drawn from a wide region of the chamber (Figure 3d). The downward 
current near the outlet region is thus also not as large. With Fo = 25, numerical experiments 
also indicate that the clockwise circulation region has greatly reduced in size and is confined 
nearer to the inlet region. A small circulation is also observed just above the inlet region, 
entraining into the incoming heated fluid from above. The temperature distribution away from 
the inlet region is found to be fairly uniform. 

Numerical experiments with varying Ro for constant Fo are shown in Figures 5 and 6 (with 
Fo held constant at 1.0). For large Ro, the heated fluid has sufficient horizontal momentum and 
buoyancy to cause the heated fluid to spread out near the surface region across the chamber. 
At low Ro the isotherms appear to form a diffusion like pattern near the inlet region (with Fo 
held constant, the initial rate of rise of the trajectory of the warm fluid is the same for all the 
Raynolds numbers considered). It should, however, be cautioned here that as Ro varies at 
constant Fo, the values of (To — Tref) can be different for different sets of numerical experiments 
without being evident in the solutions. For example, as Ro increased, Vo in the definition of 
Ro = Vo/vo increases for fixed do and vo. For Fo to remain constant with increasing Vo, implies 
that ∆ρo in the definition Fo = Vo/√[(∆ρo/ρo)gdo] has to increase proportionally. Thus, an increase 
in Ro with Fo held constant could also mean ∆To = (To — Tref) has increased implicitly. Hence, 
the behaviour of the fluid in the reservoir away from the inlet region with increasing Ro exhibits 
much similar behaviour to that of decreasing Fo values. 

In Figure 7, the vertical temperature profiles for varying Fo and Ro are plotted for each case 
of Fo = 0.5, Fo = 2.5, Fo = 25 (with Ro fixed at 500); and Ro=250, Ro = 500, Ro = 1000 (with Fo 
fixed at 1.0). The symbols B, C,... ,H represent the vertical temperature profile at positions 
with η = 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8 respectively. As Fo increase, the warm-fluid layer spreads 
from a stratified type of flow (Fo = 0.5) to a more diffusive type of flow (Fo = 25). The main 
feature of the transition is the gradual disappearance of the warm-surface layer as Fo is increased 
and the fluid reaches the downstream boundary at a lower mean excess temperature 
concentration. As Fo decreases, a higher level of the excess temperature concentration reaches 
the downstream boundary. 

Figure 7 also shows that, with Fo fixed at 1.0, increases in Reynolds number results in 
transferring more excess heat to the downstream boundary. However, for the same Fo, the flow 
patterns near the inlet region are always similar. Away from the inlet region, Ro then determines 
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whether the flow still possess sufficient horizontal momentum to spread the fluid out near the 
surface or let the fluid diffuse throughout the fluid body. 

Further study of Figure 7 shows that the temperature profiles are vertical at the floor, indicating 
that the adiabatic wall condition is well satisfied. Heat transfer processes are also evidenced 
from these vertical temperature profiles. Along the surface, the temperature distributions show 
that there is always a vertical temperature gradient near the surface region at steady state. This 
phenomena develops for steady state solution when there is heat transfer across the surface of 
the liquid. 

The local value of the vertical temperature gradient along the liquid surface of the chamber 
is also a measure of the local heat transfer rate. It varies along the surface and generally decreases 
in the direction of the motion. Along the surface, heat is lost to the surrounding atmosphere; 
and the surface, temperature (and subsequently the temperature in the chamber reservoir) 
decreases away from the inlet region. As a result, the local temperature difference between the 
surface and the surroundings decreases, and the local heat transfer rate also decrease. In general, 
the cooler region in the chamber reservoir away from the inlet region tends to catch up with 
the warm inlet region. Thus, as the heated liquid moves downstream, the temperature profiles 
also show a flattening effect, indicating decreasing in vertical heat transfer. The vertical 
temperature profiles are also strongly affected by the general circulation pattern in the chamber. 
Near the surface region, the profiles show that convection and diffusion heat transfer processes 
are significant. This temperature pattern is due to the spreading motion generated by the strong 
surface current and the horizontal momentum of the incoming jet. Along the bottom of the 
chamber, the profiles are more conduction-like, because the velocities in this region are relatively 
small compared with the surface current. 

Typical cooling chamber reservoir velocity profiles are represented in Figure 8 with the 
numerical experiments for Fo = 2.5, Ro = 500. Figure 8a indicates that, except near the two end 
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walls, the surface current is usually in the positive η-direction, and a reverse current in the 
interior returns the mass flux. The depth dividing the forward and return current varies 
significantly with locations. The depth generally increases with increasing distance away from 
the inlet region. The corresponding vertical u-velocity distributions for various constant depth 
of ζ are displayed in Figure 8b. It indicates down-welling in the downstream half of the reservoir 
and up-welling in the upstream half of the reservoir. The vertical velocities are larger near the 
inlet and outlet wall regions of the reservoir. The reason for this is the inclination of the walls 
at these locations. Above the inlet region, the buoyancy of the warm fluid forces the flow upwards; 
below the inlet region, colder return fluid flows up to replace fluid entrained into the inflowing 
warm fluid. Near the- outlet region of the reservoir, surface flow is being forced downwards 
towards the outlet region. In the middle of the reservoir, the flow is mostly horizontal i.e. u ≈ 0. 

Besides the predominant effects of Fo and Ro on the cooling chamber fluid flow and heat 
transfer characteristics, the inlet dimension relative to the dimensions of the reservoir, and the 
topography of the reservoir are also important factors in influencing the cooling chamber 
solutions. The cooling chamber into which heated fluid is injected may be shallow relative to 
the dimension of the inlet opening. Examples of this occur for some power station cooling ponds 
because the near-shore areas adjacent to the power plant sites are often shallow and because 
large quantities of heated water discharged usually require discharge ducts of large dimensions. 
The flow pattern of the buoyant discharges in shallow reservoir is thus influenced by the 
interaction of the jet with the bottom and with free surface. On the other hand, if the reservoir 
is deep, the heated fluid may not reach the bottom of the reservoir. For a large (long) reservoir, 
the heated fluid will almost certainly be cooled to ambient temperature before it reaches the 
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downstream region. However, if the reservoir is small (short), the heated fluid may remain warm 
when it reaches the downstream region. 

Comparison between Figure 9 with Figure 3c and Figure 4c shows the changes in the flow 
and temperature patterns as the relative dimensions of the depth and inlet of the reservoir given 
by the ratio (D/do) is varied from 5 to 10. For the particular numerical experiments considered 
here, the parameters held constant are Fo = 2.5, Ro = 500, L/D = 10 and wall-slopes = 45°. For 
D/do = 5, the heated fluid has spread to the bottom of the relatively 'shallow reservoir'. For 
D/do = 10, there is sufficient buoyancy to keep the heated fluid afloat as a stratified layer, and 
the reservoir is deep enough (relative to the inlet dimension) to prevent the heated fluid reaching 
the bottom. For D/do = 5, some of the heated fluid has spread to the bottom. 

Varying the length to depth ratio (L/D) of the reservoir also produces changes in the flow and 
temperature patterns in the cooling reservoir solutions. Figure 10, in comparison with Figure 3b 
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and Figure 4b, shows that for lower values of L/D (say, L/D = 5 with other parameters held 
constant), the heated fluid may not have sufficient surface area to dissipate its heat load to the 
atmosphere before reaching the outlet region. 

Varying the depth of submergence of the inlet and the slope of the reservoir also significantly 
affects the flow pattern in the reservoir; especially near the inlet and outlet regions (compare 
Figure 11 with Figure 3a and Figure 4a). Since most fluid has a positive coefficient of thermal 
expansion, incoming heated fluid tends to rise and float near the surface of the receiving fluid. 
With submerged inlet, the effect on the heated fluid trajectory is the deflection of the jet upward 
in the vertical direction as the heated fluid enters the reservoir. Submerged discharges into the 
reservoir are also characterized by high dilution. The greater the submergence of the inlet below 
the fluid surface, the larger the temperature reduction at the surface. If the heated fluid is 
discharged into the reservoir at the surface, then the temperature reduction and mixing is minimal; 
and the heat transfer at the surface is larger than for submerged discharge into the reservoir. 

If the heated liquid is introduced into the reservoir in such a way that minimum mixing occurs 
between the heated effluent and the receiving body of cooling fluid, then heat dissipation to the 
atmosphere is at the highest rate since the surface-layer temperature is at a maximum. In many 
instances, however, maximum-temperature criteria prevent use of this method since the 
temperature of the fluid surface layer may be above permissible value. 

COMPARISON WITH FINDINGS OF OTHER INVESTIGATORS 
Numerical models, while based on theoretical equations that represent the physical processes, 
are only approximations to the real physical processes involved. As a result, experimental evidence 
and field data are required to establish the accuracy and applicability of the numerical model. 
Experimental work on buoyant jets are many11,14,16,24–26. However, experiments suitable for 
direct comparison with the numerical results obtained here were few. One of these available for 
comparison was done by Pleasance44. The dimensionless parameters considered in the 
experiments were in the range of Fo = 0.70 to 4.5 and Ro = 180 to 1200 for a rectangular cooling 
chamber. The results of the experiments and the corresponding numerical solutions are presented 
in Figures 11 and 12. The experimental results exhibit a strong forward current in a narrow 
layer near the surface with much smaller velocities beneath this layer as indicated in Figure 11a. 
A reverse current occurs somewhere near the bottom of the reservoir to return the mass flux 
entrained into the surface layer near the inlet region. This behaviour is consistent with what 
was obtained in the numerical experiments with vertical walls as indicated in the same Figure 
11a. There is some indication that, due to the influence of the physical side walls in the experiments 
and the two-dimensional constraint imposed on the numerical model, the strength of the reverse 
flow in the laboratory simulation of the problem was not as great as that predicted by the 
numerical model. Further study of the centreline temperature decay pattern away from the inlet 
region is shown in Figure 12. It shows that the profile of temperature decay away from the inlet 
region obtained from the numerical experiments followed closely to those observed in the 
experiments. Studies of temperature distributions on prototype cooling reservoirs were also made 
by many workers3,8–13,17. Their results vary considerably from site to site. However, in general, 
these indicate large temperature gradients and significant vertical convection near the inlet to 
the cooling reservoir. One such vertical temperature profile obtained by Summers et al.26 at a 
site near an inlet to the cooling pond is shown in Figure 11b with some numerically obtained 
vertical temperature profiles near the inlet to the cooling chamber. It can be seen that the 
dimensionless vertical temperature distribution near the inlet region of a prototype cooling 
reservoir is similar to those obtained by the numerical experiments. 

In the present numerical experiments, the flow field in the cooling chamber is sensitive to the 
value of Fo. The thickness of the heated liquid layer very clearly increases as the Fo was increased. 
These phenomena were also observed in the experiments conducted by Tamai et al.27 and 
Hayashi and Shuto11. Their experiments were performed for a warm water jet discharged 
horizontally at the surface of a body of deep water. The dimensionless parameters considered 
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by Tamai et al. are of Fo ranged from 2.4 to 11.3 and Ro ranged from 6.6 × 103 to 2.1 × 104. 
Those described by Hayashi and Shuto are of Fo = 1.4 to 16.1 and Ro = 5.6 × 103 to 3.1 × 104. 
Tamai et al. and Hayashi et al. observed that for small values of Fo ≤ 2.6 a narrow stream of 
warm water formed along the surface, with very little mixing or spreading. The smaller the Fo, 
the thinner the surface layer of heated water. These phenomena were also observed in the present 
numerical experiments as shown in Figures 3 and 4. 
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In another study, Stefan23,24 and Stefan and Schiebe25 presented laboratory results for heated 
jets entering a basin. The inlet jet dimensions in the study were much smaller than the basin 
depths. Vertical isotherm plots were presented along the jet centreline for Fo of 0.62 and 0.72. 
These plots indicate large temperature gradients and significant vertical convection near the 
inlet wall, and a stratified warm layer formed near the surface away from the inlet region. This 
behaviour is similar to that shown for the present numerical experiments for small Fo (Figures 
3a–b and Figures 4a–b). Their temperature gradients were larger than the numerical results 
obtained here. This is believed to be due to the two-dimensional constraint imposed on the 
present numerical model which does not take into account the lateral spreading of the buoyant 
fluid and thus results in too much diffusion in the vertical direction. However, in general, their 
vertical isotherms are very similar to those obtained by the present numerical experiments. They 
also presented some velocity plots which exhibited a strong current in a narrow layer near the 
surface with much smaller velocities beneath this layer and some of the velocities near the bottom 
are in the opposite direction to those of the surface currents. The present numerical experiments 
also exhibit similar behaviour. 

Comparison with the numerical solutions obtained by other investigators is difficult as similar 
numerical solutions are not available. The velocity vector solutions obtained by Roberts and 
Streets19 for heated water discharged into a simulated 'sloping-dam' provided some features for 
comparison. Their results show the development of the flow over time. The Ro of the flow is 
about 100 and the Fo is estimated to be around 0.4. Hence, the heated water is highly buoyant 
and as it enters the 'dam', it spreads out, rises to the surface almost immediately and, moves 
across the 'dam' in a surface current. The density current is then forced down to the outflow 
and circulation pattern begin to form in response to the entrainment of fluid. The driving by 
the viscous forces originating from the surface layer flow and the downward movement of the 
fluid near the outlet region, further enhanced the circulation. These phenomena are also observed 
in the present numerical experiments for small Fo as shown in Figure 3a and Figure 4a for 
similar trapezoidal cooling chamber. 

CONCLUSIONS 
The flow fields and temperature profiles in a flow-through trapezoidal cooling chamber are 
strong function of both the Fo and Ro. Variation of Fo has a significant effect on the trajectories 
of the buoyant inflow. Numerical experiment shows that for small Fo, there is an almost immediate 
rise of the trajectory of the warm fluid as it enters the chamber. The warm fluid then spreads 
towards the surface and remains afloat near the surface region until it reaches the downstream 
boundary. As Fo is increased, the circulation and surface flow pattern change dramatically. The 
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isotherm and streamline contours of the cooling chamber show the gradual spreading of the 
incoming flow towards the bottom of the reservoir as Fo is increased. The behaviour for the 
increase in Ro (with fixed Fo) is qualitatively similar to that for a decrease of Fo with Ro held 
constant. For the opened trapezoidal cooling chamber considered here, the submergence ratio 
D/do, chamber length to depth ratio L/D and chamber wall angles are also significant in 
influencing the flow fields. 
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